The booming development and huge market of micro-videos bring new e-commerce channels for merchants. Currently, more micro-video publishers prefer to embed relevant ads into their micro-videos, which not only provides them with business income but helps the audiences to discover their interesting products. However, due to the micro-video recording by unprofessional equipment, involving various topics and including multiple modalities, it is challenging to locate the products related to micro-videos efficiently, appropriately, and accurately. We formulate the microvideo-product retrieval task, which is the first attempt to explore the retrieval between the multi-modal and multi-modal instances. A novel approach named Multi-Queue Momentum Contrast (MQMC) network is proposed for bidirectional retrieval, consisting of the uni-modal feature and multi-modal instance representation learning. Moreover, a discriminative selection strategy with a multi-queue is used to distinguish the importance of different negatives based on their categories. We collect two large-scale microvideo-product datasets (MVS and MVS-large) for evaluation and manually construct the hierarchical category ontology, which covers sundry products in daily life. Extensive experiments show that MQMC outperforms the state-of-the-art baselines. Our replication package (including code, dataset, etc.) is publicly available at https://github.com/duyali2000/MQMC.
translated by 谷歌翻译
增强学习算法需要大量样品;这通常会限制他们的现实应用程序在简单的任务上。在多代理任务中,这种挑战更为出色,因为操作的每个步骤都需要进行沟通,转移或资源。这项工作旨在通过基于模型的学习来提高多代理控制的数据效率。我们考虑了代理商合作并仅与邻居进行当地交流的网络系统,并提出了基于模型的政策优化框架(DMPO)。在我们的方法中,每个代理都会学习一个动态模型,以预测未来的状态并通过通信广播其预测,然后在模型推出下训练策略。为了减轻模型生成数据的偏见,我们限制了用于产生近视推出的模型使用量,从而减少了模型生成的复合误差。为了使策略更新的独立性有关,我们引入了扩展的价值函数,理论上证明了由此产生的策略梯度是与真实策略梯度的紧密近似。我们在几个智能运输系统的基准上评估了我们的算法,这些智能运输系统是连接的自动驾驶汽车控制任务(FLOW和CACC)和自适应交通信号控制(ATSC)。经验结果表明,我们的方法可以实现卓越的数据效率,并使用真实模型匹配无模型方法的性能。
translated by 谷歌翻译
ELO评级系统被广泛采用来评估(国际象棋)游戏和体育运动者的技能。最近,它还集成到了评估计算机化AI代理的性能时的机器学习算法中。然而,精确估计ELO评级(对于顶级球员)通常需要许多轮竞争,这可能是昂贵的。在本文中,为了提高ELO评估的样本效率(对于顶级球员),我们提出了一种有效的在线匹配调度算法。具体而言,我们通过Dueling Birits框架识别并匹配顶级播放器并将强盗算法定制到ELO的梯度更新。我们表明它减少了每一步记忆和时间复杂度来恒定,与需要$ O(t)$时间的传统似然最大化方法相比。我们的算法对$ \ tilde {o}(\ sqrt {t})$,Sublinear在竞争回合的数量中有遗憾的保证,并且已经扩展到多维ELO评级,用于处理风情游戏。我们经验证明我们的方法在各种游戏任务上实现了卓越的收敛速度和时间效率。
translated by 谷歌翻译
解决稀疏奖励的多目标强化学习(RL)问题通常是具有挑战性的。现有方法利用目标依赖收集的经验,以减轻稀疏奖励提出的问题。然而,这些方法仍然有效,无法充分利用经验。在本文中,我们提出了基于模型的后敏感体验重放(MIRH),通过利用环境动态来产生虚拟实现的目标,更有效地利用更有效的体验。用从训练有素的动态模型的交互中产生的虚拟目标替换原始目标导致一种新的重定相制方法,基于模型的重新标记(MBR)。基于MBR,MEHER执行加强学习和监督学习以获得高效的政策改进。从理论上讲,我们还证明了MBR数据的目标调节监督学习的监督部分,优化了多目标RL目标的下限。基于几个点的任务和模拟机器人环境的实验结果表明,MINHER比以前的无模型和基于模型的多目标方法实现显着更高的样本效率。
translated by 谷歌翻译
Federated learning has recently been applied to recommendation systems to protect user privacy. In federated learning settings, recommendation systems can train recommendation models only collecting the intermediate parameters instead of the real user data, which greatly enhances the user privacy. Beside, federated recommendation systems enable to collaborate with other data platforms to improve recommended model performance while meeting the regulation and privacy constraints. However, federated recommendation systems faces many new challenges such as privacy, security, heterogeneity and communication costs. While significant research has been conducted in these areas, gaps in the surveying literature still exist. In this survey, we-(1) summarize some common privacy mechanisms used in federated recommendation systems and discuss the advantages and limitations of each mechanism; (2) review some robust aggregation strategies and several novel attacks against security; (3) summarize some approaches to address heterogeneity and communication costs problems; (4)introduce some open source platforms that can be used to build federated recommendation systems; (5) present some prospective research directions in the future. This survey can guide researchers and practitioners understand the research progress in these areas.
translated by 谷歌翻译
Masked Modeling (MM) has demonstrated widespread success in various vision challenges, by reconstructing masked visual patches. Yet, applying MM for large-scale 3D scenes remains an open problem due to the data sparsity and scene complexity. The conventional random masking paradigm used in 2D images often causes a high risk of ambiguity when recovering the masked region of 3D scenes. To this end, we propose a novel informative-preserved reconstruction, which explores local statistics to discover and preserve the representative structured points, effectively enhancing the pretext masking task for 3D scene understanding. Integrated with a progressive reconstruction manner, our method can concentrate on modeling regional geometry and enjoy less ambiguity for masked reconstruction. Besides, such scenes with progressive masking ratios can also serve to self-distill their intrinsic spatial consistency, requiring to learn the consistent representations from unmasked areas. By elegantly combining informative-preserved reconstruction on masked areas and consistency self-distillation from unmasked areas, a unified framework called MM-3DScene is yielded. We conduct comprehensive experiments on a host of downstream tasks. The consistent improvement (e.g., +6.1 mAP@0.5 on object detection and +2.2% mIoU on semantic segmentation) demonstrates the superiority of our approach.
translated by 谷歌翻译
Deep learning classifiers provide the most accurate means of automatically diagnosing diabetic retinopathy (DR) based on optical coherence tomography (OCT) and its angiography (OCTA). The power of these models is attributable in part to the inclusion of hidden layers that provide the complexity required to achieve a desired task. However, hidden layers also render algorithm outputs difficult to interpret. Here we introduce a novel biomarker activation map (BAM) framework based on generative adversarial learning that allows clinicians to verify and understand classifiers decision-making. A data set including 456 macular scans were graded as non-referable or referable DR based on current clinical standards. A DR classifier that was used to evaluate our BAM was first trained based on this data set. The BAM generation framework was designed by combing two U-shaped generators to provide meaningful interpretability to this classifier. The main generator was trained to take referable scans as input and produce an output that would be classified by the classifier as non-referable. The BAM is then constructed as the difference image between the output and input of the main generator. To ensure that the BAM only highlights classifier-utilized biomarkers an assistant generator was trained to do the opposite, producing scans that would be classified as referable by the classifier from non-referable scans. The generated BAMs highlighted known pathologic features including nonperfusion area and retinal fluid. A fully interpretable classifier based on these highlights could help clinicians better utilize and verify automated DR diagnosis.
translated by 谷歌翻译
In object detection, post-processing methods like Non-maximum Suppression (NMS) are widely used. NMS can substantially reduce the number of false positive detections but may still keep some detections with low objectness scores. In order to find the exact number of objects and their labels in the image, we propose a post processing method called Detection Selection Algorithm (DSA) which is used after NMS or related methods. DSA greedily selects a subset of detected bounding boxes, together with full object reconstructions that give the interpretation of the whole image with highest likelihood, taking into account object occlusions. The algorithm consists of four components. First, we add an occlusion branch to Faster R-CNN to obtain occlusion relationships between objects. Second, we develop a single reconstruction algorithm which can reconstruct the whole appearance of an object given its visible part, based on the optimization of latent variables of a trained generative network which we call the decoder. Third, we propose a whole reconstruction algorithm which generates the joint reconstruction of all objects in a hypothesized interpretation, taking into account occlusion ordering. Finally we propose a greedy algorithm that incrementally adds or removes detections from a list to maximize the likelihood of the corresponding interpretation. DSA with NMS or Soft-NMS can achieve better results than NMS or Soft-NMS themselves, as is illustrated in our experiments on synthetic images with mutiple 3d objects.
translated by 谷歌翻译
The foundation models have recently shown excellent performance on a variety of downstream tasks in computer vision. However, most existing vision foundation models simply focus on image-level pretraining and adpation, which are limited for dynamic and complex video-level understanding tasks. To fill the gap, we present general video foundation models, InternVideo, by taking advantage of both generative and discriminative self-supervised video learning. Specifically, InternVideo efficiently explores masked video modeling and video-language contrastive learning as the pretraining objectives, and selectively coordinates video representations of these two complementary frameworks in a learnable manner to boost various video applications. Without bells and whistles, InternVideo achieves state-of-the-art performance on 39 video datasets from extensive tasks including video action recognition/detection, video-language alignment, and open-world video applications. Especially, our methods can obtain 91.1% and 77.2% top-1 accuracy on the challenging Kinetics-400 and Something-Something V2 benchmarks, respectively. All of these results effectively show the generality of our InternVideo for video understanding. The code will be released at https://github.com/OpenGVLab/InternVideo .
translated by 谷歌翻译
In this paper, we are interested in learning a generalizable person re-identification (re-ID) representation from unlabeled videos. Compared with 1) the popular unsupervised re-ID setting where the training and test sets are typically under the same domain, and 2) the popular domain generalization (DG) re-ID setting where the training samples are labeled, our novel scenario combines their key challenges: the training samples are unlabeled, and collected form various domains which do no align with the test domain. In other words, we aim to learn a representation in an unsupervised manner and directly use the learned representation for re-ID in novel domains. To fulfill this goal, we make two main contributions: First, we propose Cycle Association (CycAs), a scalable self-supervised learning method for re-ID with low training complexity; and second, we construct a large-scale unlabeled re-ID dataset named LMP-video, tailored for the proposed method. Specifically, CycAs learns re-ID features by enforcing cycle consistency of instance association between temporally successive video frame pairs, and the training cost is merely linear to the data size, making large-scale training possible. On the other hand, the LMP-video dataset is extremely large, containing 50 million unlabeled person images cropped from over 10K Youtube videos, therefore is sufficient to serve as fertile soil for self-supervised learning. Trained on LMP-video, we show that CycAs learns good generalization towards novel domains. The achieved results sometimes even outperform supervised domain generalizable models. Remarkably, CycAs achieves 82.2% Rank-1 on Market-1501 and 49.0% Rank-1 on MSMT17 with zero human annotation, surpassing state-of-the-art supervised DG re-ID methods. Moreover, we also demonstrate the superiority of CycAs under the canonical unsupervised re-ID and the pretrain-and-finetune scenarios.
translated by 谷歌翻译